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Abstract. Optical properties of films containing spherical particles in a non-absorbing matrix
have been modelled by a four-flux radiative transfer theory. In this paper we demonstrate
methods to calculate all parameters in this model. Scattering and absorption coefficients can
easily be computed from Lorenz–Mie theory if the particle concentration is not too high.
Forward-scattering ratios for collimated and diffuse radiation,σc and σd , respectively, are in
general not equal. We establish a method to evaluate the forward-scattering ratios from Lorenz–
Mie theory and an improved version of Hartel theory, both for perfectly diffuse isotropic radiation
as well as for anisotropic conditions. We also give an explicit way to calculate the average
pathlength parameter in terms of particle refractive index, particle concentration, size parameter
and distance from the illuminated film interface. The characterization of forward-scattering ratios
and the average pathlength parameter leads to an improved understanding of the applicability of
the standard four-flux model.

1. Introduction

This paper is concerned with the optical properties of inhomogeneous materials consisting of
spherical particles in a non-absorbing matrix. Multiple scattering of light in these materials
can be described by radiative transfer models. In the general case one has to resort to
numerical solutions [1], but important simplifications are possible if the angular dependence
of scattered radiation is not needed. Under diffuse illumination of opaque pigmented films,
the Kubelka–Munk theory [2] can be applied, and the effect of boundary reflections at
film and backing (or substrate) interfaces can easily be taken into account. For collimated
illumination of opaque films, an extended Kubelka–Munk theory is often suitable [3]. Four-
flux models are required when collimated components exist in the radiation field [4]. The
most versatile four-flux model seems to be the one developed by Maheu and co-workers
[5], which will be denoted ‘MLG model’ throughout this paper. This theory can be applied
to the case of collimated as well as diffuse illumination. From the theory one can obtain
explicit relations for specular and diffuse components of reflectance and transmittance, in
terms of particle concentration, volumetric scattering and absorption cross sections of the
particles, thickness of the coating, and forward-scattering ratios.

The four-flux model is useful in the following experimental situation. We consider a
light scattering inhomogeneous material present as a slab or as a coating on a substrate.
Measurements of total and diffuse reflectance and transmittance are carried out, for example
by an integrating sphere instrument. The importance of the four-flux model comes from
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the fact that it provides a description of this situation of standard optical analysis. It can
be used to predict the conditions for obtaining optical properties desirable for a specific
application or to establish a model for an optical material. Thick particulate coatings or
slabs of the kind envisaged here are important technological materials [6], for example
we mention paints, paper, pigmented polymer foils, and fibrous insulation. More detailed
optical characterization of inhomogeneous materials can be carried out by, for example,
angular dependent scattering, backscattering, and photon diffusion measurements using laser
techniques. These situations fall outside the scope of the theory studied in this paper.

A crucial assumption in radiative transfer models is that the interaction of
electromagnetic radiation with a particle is not influenced by the presence of neighbouring
particles. This means that the volume fraction of particles must not be too high.
However, a study by Brewster and Tien [7] indicates that the parameter determining the
onset of dependent scattering is rather the ratio of the distance between the surfaces of
neighbouring particles to the wavelength. More rigorous limits for the independent scattering
approximation in the simpler two-dimensional case should be possible to obtain by the
formalism of Haarmans [8].

In order to confidently use the four-flux theory, the various parameters appearing in it
must be known. The effective scattering and absorption coefficients of the non homogeneous
film can bea priori defined in terms of Lorenz–Mie parameters. However, the assumption
that the forward-scattering ratio of a particle, when illuminated with collimated radiation,
is equal to the forward-scattering ratio under diffuse illumination, has been widely used
[9–11]. Another implicit approximation involves the assignment of a specific value for the
average pathlength parameter, which until now is known only in special cases.

In this paper we apply the Lorenz–Mie theory [12] to describe the interaction between
single spherical particles and electromagnetic radiation, and an extended version of Hartel
theory [13] to take into account multiple-scattering effects on the forward-scattering ratio,
as well as on the average pathlength parameter, for any angular dependent radiation field
inside the film. We remove the implicit assumptions of the MLG model (section 2), and we
study the effect of the proposed generalizations by evaluating forward-scattering ratios and
average pathlength parameters for different kinds of material (section 3). Hence, we have
established methods to evaluate all parameters appearing in the four-flux model.

2. Theory

When a particle is illuminated with electromagnetic radiation, the amount of energy which
is absorbed or scattered by the particle is related to the corresponding cross sections. The
incident, scattered, and internal fields can be expanded in terms of partial wave contributions,
and the involved coefficients are obtained from boundary conditions. For a spherical particle,
from the knowledge of the coefficients related to the scattered field (the so-called scattering
coefficients,an andbn), normalized scattering and extinction cross sections of the particle
can be evaluated [14]:

Qsca = (2/x2)

∞∑
n=1

(2n+ 1)[|an|2+ |bn|2] (1)

Qext = (2/x2)

∞∑
n=1

(2n+ 1)Re[an + bn] (2)

wherex = 2πr/λ is the size parameter,r is the particle radius, andλ is the wavelength
of the incident radiation in the surrounding medium. The normalized absorption cross
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section is calculated fromQabs = Qext −Qsca. The corresponding cross sections are given
by Cabs/sca/ext = πr2Qabs/sca/ext . Besides the explicit dependence on the size parameter,
the cross sections implicitly depend on size parameter and relative refractive index of the
particle through the scattering coefficients.

The angular dependence of the scattered radiation can be related to the so-called single-
particle phase function [15]:

p(cosθ) = 2

x2Qext

{|S1(cosθ)|2+ |S2(cosθ)|2} (3)

whereθ is the polar angle (relative to the incident direction), withS1(cosθ) andS2(cosθ)
the scattering amplitudes.

In the MLG model, the forward-scattering ratio (σ = the energy scattered by the
particle in the forward hemisphere divided by the total scattered energy), enters in the
coupled system of differential equations, from which collimated and diffuse components of
the radiation field (Ic, Jc, Id , andJd ) are obtained [5]:

dIc
dz
= −(α + β)Ic (4a)

dJc
dz
= (α + β)Jc (4b)

dId
dz
= −ξβId − ξ(1− σd)αId + ξ(1− σd)αJd + σcαIc + (1− σc)αJc (4c)

dJd
dz
= ξβJd + ξ(1− σd)αJd − ξ(1− σd)αId − σcαJc − (1− σc)αIc. (4d)

Here z is a linear coordinate, measured from the illuminated side and perpendicular to
the interface,α(β) is the scattering (absorption) coefficient per unit length which, within
the independent scattering approximation, is evaluated as the particle volume fraction(f )

times the volumetric scattering (absorption) cross section of the particle (Csca/V (Cabs/V )

where V is the particle volume). Differences between pathlengths for collimated and
diffuse radiation are taken into account by means of the parameterξ , the so-called average
pathlength parameter. The forward-scattering ratios, for collimated and diffuse incident
radiation, are denoted byσc andσd respectively.

The solutions for the collimated components can be easily obtained. Then, following
the MLG derivation, second-order differential equations for the diffuse components can be
written in a concise notation, in terms of the following constants:

A1 = ξ2β[β + 2(1− σd)α] (5a)

A2 = α[ξσcβ + ξ(1− σd)α + σc(β + α)] (5b)

A3 = α{ξ [(1− σd)α + (1− σc)β] − (1− σc)(β + α)} (5c)

A4 = ξ [β + (1− σd)α] (5d)

A5 = ξ(1− σd)α. (5e)

These equations correspond to the ones given by Maheuet al whenσd ≡ σc. The forward-
scattering ratio for collimated incident radiation on a spherical particle can be evaluated
within the framework of Lorenz–Mie theory. It is given by

σc =
(∫ 1

0
p(µ) dµ

)(∫ 1

−1
p(µ) dµ

)−1

(6a)



9086 W E Vargas and G A Niklasson

whereµ = cosθ . The explicit integration of the previous equation was done by Chylek
[16]. He obtained

σc = 1

2
− (2/δ)

∞∑
m=2

′′ ∞∑
n=1

′
pnm Re(ama

∗
n + bmb∗n)− (2/δ)

∞∑
m=1

′ ∞∑
n=1

′
qnm Re(amb

∗
n). (6b)

Hereδ = x2Qsca, and

pnm = (−1)(m+n−1)/2 (2m+ 1)(2n+ 1)(m− 1)!!n!!

(m− n)(m+ n+ 1)m!!(n− 1)!!
(6c)

qnm = (−1)(m+n)/2
(2m+ 1)(2n+ 1)m!!n!!

m(m+ 1)n(n+ 1)(m− 1)!!(n− 1)!!
(6d)

6′ states a summation over odd integral numbers, and6′′ means another summation which
is evaluated over even integral numbers. Another way to calculate the forward-scattering
ratio under collimated incident radiation is by expanding the single-particle phase function
in terms of Legendre polynomials [1]. Given an incident direction along thez-axis, for
unpolarized light the phase function can be evaluated from

p(µ) =
∞∑
i=0

ωiPi(µ). (7)

By integrating (6a), only the terms corresponding toi = 0 and i odd contribute, and the
forward-scattering ratio becomes

σc = 1

2ω0

[
ω0+

∞∑
i=1

′
ωigi

]
(8a)

whereω0 = Qsca/Qext is the particle albedo, and

gi =
∫ 1

0
Pi(µ) dµ = (−1)(i−1)/2 (i!!)2

i(i + 1)i!
when i is odd, otherwisegi = 0. (8b)

(6b) and (8a) give always the same numerical results, provided the set ofωi coefficients
are evaluated as indicated below.

In order to evaluate the set of coefficientsωi , we need to obtain them from equations (3)
and (7). By applying the orthonormal condition for Legendre polynomials, one can invert
these equations to obtain

ωi = 2i + 1

x2Qext

{ ∞∑
n=1

γn

n∑
m=1

γm

[
WnmηnmiInmi + VnmνnmiJnmi

1+ δnm

]}
(9a)

where

γn = 2n+ 1

n(n+ 1)
(9b)

Wnm = Re[ana
∗
m + bnb∗m] (9c)

Vnm = Re[anb
∗
m + bna∗m] (9d)

Inmi =
∫ 1

−1
[πnπm + τnτm]Pi(µ) dµ (9e)

Jnmi =
∫ 1

−1
[πnτm + πmτn]Pi(µ) dµ (9f )

with

πn = dPn
dµ

τn = µdPn
dµ
− (1− µ2)

d2Pn

dµ2
. (9g)
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The integralsInmi andJnmi have been evaluated by Chu and Churchill [17] and applied by
Clark et al to calculate the coefficientsωi in terms of size parameter, and refractive index
[18]. A misprint should be noted in their equation (7).Inmi must be symmetric undern
andm permutation. The integralsInmi andJnmi are given by

Inmi = [n(n+ 1)+m(m+ 1)− i(i + 1)]2 (n+ i −m)!(m+ i − n)!(n+m− i)!
(n+m+ i + 1)!

×
{

[(n+m+ i)/2]!

[(n+ i −m)/2]![(m+ i − n)/2]![(n+m− i)/2]!

}2

(9h)

whenj = n+m− i is an even number; zero ifj is an odd number, and

Jnmi = [(n+m− i)(n+ i −m+ 1)(m+ i − n+ 1)]

× (n+ i −m+ 1)!(m+ i − n+ 1)!(n+m− i − 1)!

(n+m+ i + 1)!

×
{

[(n+m+ i + 1)/2]!

[(n+ i −m+ 1)/2]![(m+ i − n+ 1)/2]![(n+m− i − 1)/2]!

}2

(9i)

if j is an odd number; zero ifj is an even number. Furthermore,ηnmi = 1 if
0 6 n + m − i 6 2m and otherwise it will be zero;νnmi = 1 if 1 6 n + m − i 6 2m + 1
and otherwise it will be zero. We have used equations (3) and (7) to test consistency of
equations (9) when calculating the set of coefficientsωi .

In order to obtain the forward-scattering ratio under perfectly diffuse (isotropic)
radiation, incident on a particle, one must generalize the phase function for any incidence
and scattering directions (specified by the anglesθ ′ andθ , respectively). This can be done
by applying the addition theorem for Legendre polynomials [19]. By assuming azimuthal
symmetry,

p(µ,µ′) =
∞∑
n=0

ωnPn(µ)Pn(µ
′). (10a)

The corresponding forward-scattering ratio is given by

σd(z) =
(∫ 1

0
dµ′

∫ 1

0
I (z, µ′)p(µ,µ′) dµ

)(∫ 1

0
dµ′

∫ 1

−1
I (z, µ′)p(µ,µ′) dµ

)−1

(10b)

where z is the smallest distance between the particle position and the illuminated film
interface;I (z, µ′) specifies the angular dependence of the radiation field at the film depth
z. For isotropic radiation, the intensity does not depend on the polar angle,θ ′, and in this
case one obtains

σd ≡ σ (i)d =
1

2ω0

[
ω0+

∞∑
n=1

′
ωng

2
n

]
. (11)

For a collimated radiation field perpendicular to the film interfaces,I (z, µ′) →
I (z, µ′)δ(µ′ − 1), and σd → σc. This behaviour is also obtained for highly
anisotropic radiation fields with maximum intensity in some specific direction:I (z, µ′)→
I (z, µ′)δ(µ′ −µ′0). Both (8a) and (11) are in agreement with the formulations of Reichman
and Ishimaru [3, 4].

A more general radiation field which depends on the polar angle, and at a specific
depth or distance from the illuminated film interface, can be expanded in terms of Legendre
polynomials [20],

I (z, µ′) =
∞∑
n=0

cn(z)Pn(µ
′). (12)
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The angular dependence of the diffuse radiation intensity comes from multiple scattering
events. After each scattering event, the radiation scattered into the forward hemisphere,
as well as into the backward hemisphere, both depend on angle. In addition some of the
radiation might be absorbed by the spherical particles. This leads to an angular dependence
and a depth dependence of the total diffuse radiation. The decomposition of the diffuse
intensity in terms of Legendre polynomials weighted by coefficients which depend on the
geometrical depth from the illuminated side, has been extensively used in connection to
numerical schemes to solve the radiative transfer equation for semi-infinite or plane-parallel
geometries [21].

We now focus on a method for estimating the coefficientscn(z). We make use of
an order of scattering expansion: a method originally introduced by Hartel. This theory is
applicable for describing the angular and optical depth dependences of forward scattering by
a collection of monosized and randomly distributed scatterers illuminated with unpolarized
electromagnetic radiation. The particle concentration is assumed to be sufficiently small so
that dependent scattering can be neglected. The angular distribution of each scattering order
is specified by a generalized phase functionfk(µ) [13]. As pointed out by Orchard [22] the
basic form of Hartel theory [13, 23, 24] is characterized by an anomalous behaviour in the
case of optically thick films containing non-absorbing particles: a saturation value of the
total forward intensity at large optical depth values is predicted. This is a consequence of
implicitly assuming that the average pathlength parameters of the scattering orders are equal
to unity. A plausible and phenomenological way to remove the bad behaviour of Hartel’s
theory is by taking into account the average pathlength parameters,ξk, corresponding to the
different scattering orders:k = 1, 2, 3, . . .. Given the angular distribution of the diffuse
radiation emerging fromk scattering events, by means of the average pathlength parameters
we take into account the pathlength of the diffuse radiation relative to the pathlength of a
beam of collimated radiation. For the forward diffuse radiation corresponding to thekth
scattering order the average pathlength is given by

ξk =
(∫ 1

0
fk(µ) dµ

)(∫ 1

0
µfk(µ) dµ

)−1

= 2

{(
1+

∞∑
n=1

′
(2n+ 1)gn[9n]

k

)[
1+2

(
ω1

3ω0

)k
+2

∞∑
n=2

′′
(2n+ 1)hn[9n]

k

]−1}
(13a)

with

9n = ωn/ω0

2n+ 1
hn =

∫ 1

0
µPn(µ) dµ (13b)

and [13]

fk(µ) = 1

4π

∞∑
n=0

(2n+ 1)

[
ωn/ω0

2n+ 1

]k
Pn(µ). (13c)

In terms of the scattering order index, the asymptotic value of the average pathlength
parameter isξk → 2 as k → ∞. The differential equations coupling the amount of
radiation in the successive scattering orders,Qk, can be written as

dQ1

dz
= αQ0− ξ1(α + β)Q1 (14a)

dQk

dz
= ξk−1αQk−1− ξk(α + β)Qk k = 2, 3, . . . . (14b)
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In the original Hartel theory forξk ≡ 1 for k = 1, 2, . . . and the solutions of the previous
system areQk(z) = [(αz)k/k!] e−(α+β)z with the boundary conditionsQk(z = 0) = 0. In
the general caseξk 6= 1. In order to devise an extended version of Hartel theory we define
Qk(z) ≡ pk(z) e−(α+β)z. By using an induction procedure based on the integrating factor
method one can see that the general solutions of (14), for the successive scattering orders,
are of the form

pk(τ) = Fk[1− e−(ξk−1)τ ] +
k−1∑
i=1

Gi,k[e
−(ξk−1)τ − e−(ξi−1)τ ] (14c)

whereτ = (α + β)z is the optical depth, and with the boundary conditionspk(z = 0) = 0.
A set of recurrence relations is obtained by inserting the solutions (14c) into the differential
equation (14b). Namely,

Fk = ω0
ξk−1

ξk − 1
Fk−1 (15a)

Gk−1,k = ω0
ξk−1

ξk − ξk−1

[
Fk−1−

k−2∑
i=1

Gi,k−1

]
(15b)

Gi,k = ω0
ξk−1

ξk − ξi Gi,k−1 (15c)

with the following initial values:

F1 = ω0

ξ1− 1
G1,2 = ω0

ξ2− ξ1
F1 (15d)

which are obtained by solving explicitly for the first and second scattering orders. As the
scattering order index reaches large valuesξk → ξk−1 → 2, and the previous solutions
do not apply due to the diverging coefficientsGi,k. In these cases the solutions can be
approximated by

pk(τ) = Fk[1− e−(ξk−1)τ ] (15e)

which in the limit of large optical depth values are solutions of (14b) with ξk = ξk−1
∼= 2.

These solutions are consistent with the recurrence relation (15a). Because of the isotropic
distribution of high-scattering-order contributions to the total diffuse radiation intensity, the
high-order scattering coefficients,Qk(z), are characterized by a very smooth dependence on
z. This fact validates the use of the solutions (15e) for all optical depth values. Once each
pk(z) has been computed the correspondingQk(z) must be divided byk! in order to have
the appropriate weighting factors in the expansion of the forward diffuse radiation intensity.
Given |ξk − ξk−1| 6 ε in most cases numerical stability of the anisotropic solutions (14c)
can be obtained forε larger than 10−3. For smallerε (15e) has to be used instead. This
extended version of Hartel theory does not display a bad behaviour in the case of media
containing non-absorbing particles. The forward diffuse intensity is given by

I (z, µ) =
∞∑
k=1

Qk(z)fk(µ). (16a)

Hence using (12),

cn(z) = 2n+ 1

4π

∞∑
k=1

Qk(z)

[
ωn/ω0

2n+ 1

]k
. (16b)
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By expanding each Legendre polynomial in powers of its argument, the integrations involved
in (10b) can be explicitly evaluated to obtain

σd(z) =
(
σ
(i)
d +

1

2

∞∑
n=1

′ cn(z)gn
c0

[
1+ ωnχnn

ω0

]
+ 1

2

∞∑
n=1

′ωngn
ω0

∞∑
m=2

′′ cm(z)χnm
c0

)
×
(

1+
∞∑
n=1

′ cn(z)gn
c0

)−1

(17a)

whereχnm =
∫ 1

0 Pn(µ)Pm(µ) dµ is equal to zero ifn 6= m andn + m is an even number.
Moreover,χnn = 1/(2n+ 1), and if n+m is odd

χnm = 1

2n+m

[n/2]∑
k=0

[m/2]∑
j=0

(−1)j+k

[n+m+ 1− 2(j + k)]
(2n− 2k)!(2m− 2j)!

(n− k)!k!(n− 2k)!(m− j)!j !(m− 2j)!

(17b)

where [n/2] means the integral part ofn/2. In the case of an isotropic radiation field,
cn(z) = 0 for n = 1, 2, 3, . . . and c0(z) will correspond to the intensity of the radiation
field. Consequentlyσd = σ (i)d . Within this formalism, the forward-scattering ratio becomes
a function of the particle position or film depth,z, while in the MLG model a constant
value is assumed.

Now we focus on the average pathlength parameter,ξ . It has been assumed constant
in the framework of MLG radiative transfer theory, and used as a fitting parameter in
specific applications of this model [9, 10, 25]. It has also been assumed to be independent of
physical parameters of the system: particle position, size, refractive index and concentration
as well as wavelength of the incident radiation and film depth. For films containing non-
absorbing particles, whose scattering pattern is described by the Henyey–Greenstein phase
function [26], the average pathlength parameter has been given in terms of the particle
asymmetry factor and film optical thickness [27]. This method does not however take
into account the real scattering pattern of the particles, possible absorption from them and
multiple-scattering effects. It does not seem to be a general method to evaluate the average
pathlength parameter. This parameter is rigorously known only for specific cases: it is one
for a collimated beam and two for a perfectly diffuse radiation field.

The definition of the average pathlength parameter is as follows. At a certain position
z inside the film, a light beam travels a distance1L at an angleθ ′ with the z-axis.
The projection of1L on the z-axis is denoted1z. These distances are related by
1L cos(θ ′) = 1z. By weighting both sides with the intensity of the radiation field, and
integrating in the forward hemisphere, one obtains∫ 1

0
I (z, µ′)1Lµ′ dµ′ =

∫ 1

0
I (z, µ′)1z dµ′. (18a)

At this point, we introduce the average pathlength parameter,ξ , which defines the average
ratio between1L and1z. Then, from the previous equation, one has

ξ =
(∫ 1

0
I (z, µ′) dµ′

)(∫ 1

0
I (z, µ′)µ′ dµ′

)−1

(18b)

(18b) is in agreement with Ishimaru’s formulation [4], as well as the MLG four-flux model
[5]. By integrating this equation, we have obtained an explicit expression for the average
pathlength parameter:

ξ(z) = 2

[(
1+

∞∑
n=1

′ cn(z)
c0(z)

gn

)(
1+ 2c1(z)

3c0(z)
+ 2

∞∑
n=2

′′ cn(z)
c0(z)

χn1

)−1]
. (19)
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Through the coefficientscn(z), the average pathlength parameter becomes a function of film
depth. For a collimated radiation field parallel to thez-axis, (18b) leads toξ = 1 which
is in agreement with the MLG model when diffuse components of the radiation field are
neglected in comparison to collimated ones. The two-stream model of Bohren is one of
these approaches [28], valid for very anisotropic scattering. For a perfectly diffuse radiation
field, (19) givesξ = 2, as assumed in the two-flux theory of Kubelka and Munk [2] and the
three-flux model of Reichman [3], and in agreement with the MLG model. A special case
corresponds to a highly anisotropic radiation field with some specific orientation relative
to the z-axis: I (z, µ′) → I (z, µ′)δ(µ′ − µ0). The average pathlength parameter becomes
ξ0 → 1/µ0, and σd → σc. The two-flux model of Sagan and Pollack [29] corresponds
to this kind of particular situation (withµ0 = 1/

√
3 as pointed out by Lyzenga [30]), as

well as a particular case considered by Kubelka [31], i.e.ξ = 2 for an anisotropic incident
radiation field withθ0 = 60◦.

Within the formalism that we have summarized, (17a) and (19) provide a general
framework to evaluate the forward-scattering ratio for any angular dependent radiation
field, as well as the average pathlength parameter. Through thecn coefficients, multiple-
scattering effects are taken into account andσd and ξ become dependent on the physical
parameters of the system: film depth, refractive indices of the particles and surrounding
medium, wavelength of the incident radiation, particle size and particle concentration.

When computing the optical depth dependence of the total diffuse transmission, the
original and extended Hartel theories give similar values in the limit of small optical depths.
In this small-optical-depth limit the amount of scattered radiation increases linearly with the
optical depth [32]. Beyond the small-optical-depth limit, for small or medium-sized weakly
absorbing particles the original Hartel theory overestimates the total diffuse transmission.
At medium or large optical depths there is a fairly good agreement between the original and
extended Hartel theories in the case of large absorbing particles. This is expected because
the average pathlength parameter is close to unity in such a case.

The original and extended Hartel theories neglect the backward components of the
scattered radiation. A more general approach taking into account the radiation scattered in
backward directions has been devised by Vargas and Niklasson by solving the radiative
transfer equation for a semi-infinite medium [33]. The best agreement between this
generalized multiple-scattering approach and the extended Hartel theory corresponds to
large absorbing particles. It is within this multiple-scattering approach that the so called
backscattering enhancement could be considered [34, 35].

3. Numerical calculations

We evaluated the forward-scattering ratio from (17a), in terms of the optical depth. Figure 1
displays the results. Representative materials have been considered: (a) weakly scattering
and non-absorbing amorphous SiO2 particles in a polymer binder, (b) highly scattering
and non-absorbing TiO2 (rutile) pigments in polyethylene, (c) highly scattering and weakly
absorbing crystalline Si particles in an amorphous alumina matrix and (d) weakly scattering
and strongly absorbing Fe particles in air. The refractive indices correspond to the middle
of the visible wavelength range. In all cases, the most relevant and expected feature is that
σd → σ

(i)
d at large optical depth, while in the opposite limitσd → σc. In the Rayleigh limit

of small size parameter values (x ≈ 0.1), σ (i)d ≡ σc ≡ 1/2. Beyond the Rayleigh limit,
small differences betweenσ (i)d and σc arise. These differences are more pronounced at
intermediate values of the size parameter (x ≈ 3), and they decrease at large size parameter
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Figure 1. Forward-scattering ratio in terms of optical depth, for different materials and particle
size parameters. The particle volume fraction and free space wavelength of the impinging
radiation were put to 0.05, and 0.55 µm respectively. For each case, the particle refractive
index divided by the matrix refractive index has been indicated in the corresponding figure.

values (x ≈ 7). The effect of absorption seems to be the smoothing of this difference
betweenσ (i)d andσc. Most specific applications of the MLG model, have been concerned
with thick films, and the approximationσd ≡ σc has been assumed. As we have shown, it
is just in this thick-film range thatσd tends to be significantly different fromσc.

Figure 2 depicts the behaviour ofξ in terms of optical depth. The radiation field
is expected to have an increasing degree of isotropy as the optical depth increases. The
behaviour ofξ is in agreement with that, for the different cases considered. Saturation
values of the average pathlength parameter are displayed, and they depend on particle size,
concentration and refractive index. These saturation values decrease as the size parameter
increases. The effect is more pronounced for weakly scattering and non-absorbing materials
(figure 2(a)), and tends to be less significant when absorption increases (figure 2(c)). Also
for low film depths the radiation field becomes more anisotropic when the size parameter
increases. This effect is most pronounced for weakly scattering particles. In the Rayleigh
limit at large film depths, absorption decreases the degree of isotropy.
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Figure 2. Average pathlength parameter as a function of optical depth and for different particle
relative refractive indices and size parameters, as indicated in the corresponding figures.

The MLG model employs constant values ofσd andξ . It is seen from figures 1 and 2
that in most cases this is a good approximation for thick films, with optical thicknesses
larger than 10. In this limitξ tends to a constant value andσd can be put equal to the
value for an isotropic radiation field,σ (i)d . For thinner films the MLG theory is not rigorous,
since bothσd and ξ display a marked dependence on film depth,z. The theory may still
be used in an approximate way, butσd and ξ must then be interpreted as averages of the
z-dependent quantities over the film thickness.

In figure 3 we illustrate the behaviour of the forward-scattering ratio as a function of
the size parameter. We compareσc, σ

(i)
d and the value ofσd at a position of one mean

free path from the frontside of the film. In most cases,σ
(i)
d < σd < σc. At very low

size parameter values, the Rayleigh limit,σd → σ
(i)
d → σc. It is well known that in this

case the angular distribution of the single-scattered radiation tends to be symmetric with
respect to the forward and backward directions. One may think that the isotropic radiation
field assumption would be valid, but the behaviour of the corresponding average pathlength
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parameters (see figure 2) indicates that actually this is a very anisotropic condition (ξ ≈ √3).
For low-scattering particles (figures 3(a) and 3(d)), a mainly collimated radiation field is
present at large size parameter values (σd → σc). As expected the average pathlength
parameter tends to unity in these cases. As the real part of the particle refractive index
tends to unity, and the imaginary part tends to zero,σd → σc → 1, andξ → 1. This
is precisely the applicability conditions of the small-angle approximation [36]. For highly
scattering particles, at large size parameter values,σd is betweenσ (i)d andσc, with values
closer toσc. It should be noted that somewhat beyond the Rayleigh limit (x ≈ 1), σd ≈ σ (i)d
even thoughξ could be significantly less than two.

Figure 3. Forward-scattering ratios in terms of particle size parameter. The particle volume
fraction, and free-space wavelength of the impinging radiation, were put to 0.05, and 0.55 µm
respectively. For each case, the particle refractive index divided by the matrix refractive index
has been indicated in the corresponding figure. The optical depth was put to unity.
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4. Conclusions

By using the Lorenz–Mie theory to describe the interaction between a single particle and
an incident radiation field, and the extended Hartel theory to incorporate multiple-scattering
effects, we have established a general method to calculate the basic parameters involved
in the MLG four-flux radiative transfer model. In particular we focus on the forward-
scattering ratio for any angular dependent incident radiation field,σd , and the average
pathlength parameter,ξ . We have shown that bothσd andξ depend on optical depth. This
feature is not allowed for in the MLG model. For sufficiently thick films bothσd and ξ
tend to constant values and hence the MLG theory becomes more rigorous.
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